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Dislocation geometry in the TGB, phase: Linear theory
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We demonstrate that an arbitrary system of screw dislocations in a smelijaid crystal may be consis-
tently treated within harmonic elasticity theory, provided that the angles between dislocations are sufficiently
small. Using this theory, we calculate the ground-state configuration of the, pB&se. We obtain an estimate
of the twist-grain-boundary spacing and screw dislocation spacing in a boundary in terms of the macroscopic
parameters, in reasonable agreement with experimental results.
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I. INTRODUCTION where s is a complex order parametek, the vector poten-
tial, H the magnetic intensityh a chiral field determined by
Condensed matter systems offer a vast stage for the intrmolecular structur5], andn the unit director, often decom-
cate interplay between order and disorder. A beautiful exposed asi=n,+ én. The Ginzburg-Landau free ener¢j.1)
ample of such interplay is the twist-grain-boundary phasejefines two characteristic length scales: the order parameter
(TGB) of chiral smectics, which is the liquid-crystalline ana- ¢coherence lengtl= (%2/2m*|r|)2 and the magnetic field
log of the Abrikosov vortex state of type Il superconductorspenetraﬁon depth = (m* c2g/4mue* 2|r|) V2. Their ratio «
[1,2]. Morphologically, the phase consists of blocks of pure_ )/« cajled the Ginzburg parameter, controls the phase dia-

smectic(which can be either smecti§-or SmecticE) sepa- o aq 4 function of temperature and external magnetic

rated by parallel, regqlarly spaced tWiSF gfai” boundariesfield. When the Ginzburg parameter is less than the critical

where each boundary is formed by a periodic array of screwal e k.= 1/V2, the system is type I, and there is a first-

dislocations. The direction of dislocation lines rotates by a alue Ke=1/Ne, y IS type 1, . = ! '
rder transition between a normal metal in a field and the

constant angle from one grain boundary to the next. Such gra i o
dislocation arrangement causes the smectic blocks to rotaf4€iSSner phase withy=const-0 and magnetic field&=0.
about the axis perpendicular to the grain boundaries draggin/nen«>«c, the system becomes type I, and a new phase
the nematic director along. Thus the TGB structure combinettervenes between the normal-metal state and the Meissner
the properties of smectics and cholesterics: the nematic dftate. This new phase, the Abrikosov flux phase, is charac-
rector twists on average as in cholesterics while the lamellaierized by a proliferation of linear topological defects of the
structure of a smectic is preserved. In this paper only th€omplex order parameter field. The defects are magnetic
TGB, phase will be considered. As suggested by its nameflux lines, and they form a two-dimensional triangular lattice
the smectic blocks in TGBare smecticA. throughout the phase.

The analogy between the TGBhase and the Abrikosov A very similar phenomenon occurs in chiral smectics,
vortex lattice is based on the mathematical similarity of theonly the situation becomes somewhat more complicated be-
Gibbs free energies for metals in a magnetic field and fo€ause of anisotropy of the de Gennes free enévgy note
chiral smectic§1—4)]. Their respective forms, known as the that the theory of anisotropic superconductors is equally

Ginzburg-Landau free energy and the de Gennes free energ§9mplex, see, e.glf]). Instead of a single order parameter
are coherence lengtl, there are two lengths: the transverse co-

herence lengtte, =(C, /|r|)¥? and the longitudinal coher-
- 5 L ence lengthé = (C;/|r|)*2 But since the values o, and
(.—V— A +r|¢|2+ _g|¢|4 C can be made eql_JaI by r_escal_mg of_ coordinates, we will
I c 2 not be concerned with making distinctions betwegnand
&) and assumé, ~ ¢ ~¢. The chiral smectic analog of the
magnetic field penetration depth is the twist penetration
depth\,= (K,9/2Cq3|r|)¥2 whereC~C,~Cj. As in su-
perconductors, the chiral Ginzburg parametge=\,/¢ in
liquid crystals determines the structure of the phase diagram
as a function of temperature and chiral couplmghgain, a
defect phase, which is noythe TBhase, appears on the
. . phase diagram whex,>1//2. Linear topological defects in
GdEG:f d*X[C.(V—idom ¥(V +igon) ¢* the TGB, phase are screw dislocations arranged in twist
_ ) . grain boundaries.
+H(C=CMini(V =iqon)is(V +iqon); i An important problem in the theory of the defect phases
+r|g2+ 3|y 4+ LKy (V- n)2+ LK,(n- V X n)2 predicted by.the Gibbs free energi€k.l) .and (1.2 is to _
relate the lattice parameters of defect lattices to the coupling
+2K4[nX (VY Xn)]?—hn-(V xn)], (1.2 strengths that enter these energies. This is rather complicated

1
2m*

GGL: j d3X lﬂ

: (1.1

+—1 VX A)? H VXA
87T,u( X)_E' x

and
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because the Gibbs energi€ék.1l) and (1.2) include fouth- ergy associated with destruction of the order parameter
order terms that lead to nonlinear Euler-Lagrange equationgroduces an extensive term in the total free energy. Thus, in
Nevetheless, since the publication of Abrikosov's paper ovethis case, the lattice structure is determined completely by
44 years agd7], an extensive body of both experimental andthe elastic energy cost of the distorted smectic structure in-
theoretical work on the vortex arrangement in the Abrikosovduced by the presence of screw dislocations. In the language
phase has been performed, covering all possible ranges of tlé superconductivity, this is the London limit of the
external magnetic field, temperature, and Ginzburg paramsinzburg-Landau equations. For our analysis, this means
eter[8,9]. In contrast with this happy situation in supercon-that the results for the structure of a single vortex and the
ductors, there is only a small literature that address theystems of parallel vortices obtained in the theory of super-
liquid-crystal version of the problem, namely, the determina-conductors may be directly translated to the language of lig-
tion of the grain-boundary spacing and the dislocation uid crystals using the Gibbs energi€s1) and (1.2) as a
spacingl 4 within a grain boundary. In part this is due to the dictionary. We will show that there is a simple way to gen-
fact that rotation of defects in TGBmakes this version of eralize the results for parallel dislocations to the case of in-
the problem more complicated. teracting twist grain boundaries. In the low-angle limit, the
In their original papef1] Renn and Lubensky considered rotation angle is a natural small paramater, and to the lowest
the TGB, lattice structure near the upper critical fighd,  order in this parameter, the interaction energy of two twist
marking the transition from the cholesteric to the TGBgrain boundaries composed discretelinear defects turns
phase. They employed a model free energy Wlith=C and  out to be the same as that of grain boundaries withtinu-
K,=K3;=K. Additionally, they assumed that the twist pitch ous defect distribution. This observation allows us to com-
is very large in comparison to a smectic layer spacing. Undepute the energy cost for the dislocation arrangement in the
these assumptions, in a calculation that parallels Abrikosov'd GB, phase analytically.
calculation[7], they computed the ratib,/l4 for x,=0.80 The paper is organized as follows. Section Il introduces
>1/,/2 and various values df/K,. They found thai, /Iy the elastic fields suitable for type Il smectiésWe construct
increases from 0.95 fdk/K,=0 to 1.45 fork/K,=10" In  the elastic free energy functional in the harmonic approxima-
other words,|l,/l4 is sensitiveto the relative values of the tion. We demonstrate that if we have a solution for the elas-
Frank elastic constants. Our approach, which app“es neéiC fields uniform in the direction of the Iayer normal at in-
H.,, is applicable when the rotation angle between consecdinity, it is possible to construct more general solutions by
tive smectic blocks is small, predicts a value close to 0.95 fopuperimposing shifted and rotated copies of the original so-
all values ofK/K.,. lution. In Sec. Il we show that in the harmonic approxima-
Experimental determination of the TGBattice param- tion, systems of pure screw dislocations in smectics are dis-
eters has proven to be a difficult task. Early experimentdinguished from other dislocation systems by a constraint
[10-13 were crucial in establishing the existence of the dethat sets the smectic layers to be minimal surfaces. We com-
fect phase of chiral smectics and confirmed that the morpholPute the distortion fields and the elastic energy of systems of
ogy of this phase agrees with the predictions of Renn an@arallel screw dlsloqa_tlons. In Sec. IV we calculate the e!as-
Lubensky. However, in all these experimehgsand|, were ~ tic energy of an |nd|V|duaI_ twist grain boun_dary and the in-
estimated rather than measured. Recently an extensive stri€raction energy of two twist grain boundaries. In Sec. V we
tural study of the TGR phase occurring in a series of chiral obtain the elastic energy density for the TGhase. Adding
tolane derivativeg14] was undertaken by Navailles and tWO extensive terms to it, we construct the total free energy
co-workers[15]. They observed an x-ray diffraction pattern density. Its minimization yields preferred values for the grain
in the transverse direction to the pitch axis that consisted dpoundary spacing and the dislocation spacing within a grain
discrete Bragg spots, which provided a direct way to meapoundary for the given vaIu.es of matgnal parameters. We
sure the rotation angld® of smectic blocks. Since the find thatin the low-angle regime the rafig/l, is practically
smectic layer spacing is easy to measure in the same ex- consta!nt over a wide range of the control parameters, and its
periment, it has now become possible to obtain the precis¥alue is 0.95.
values ofl 4 via d/2l4=sin(A®/2). As an additional benefit,

the information regarding the number of smectic blocks per II. SUPERPOSITION OF SOLUTIONS

pitch provided a way to compute the block size from the FOR DISTORTION FIELDS

pitch values measured in a different set of experiments based _ o

on the observation of the Grandjean-Cano stgy. The The elastic free energy for smectidsdirectly follows

ratio I, /I 4 was found to vary from 0.74 to 1.08. Whereas thefrom the de Gennes free ener@i2) by assumingy|” to be

exact valuel, /I, is up to interpretation, these experiments fixed. Because the smectic density is rapidly varying, it is

are a clear indication that this ratio remains close to 1. standard to write down the elastic free energy of smectics in
In this paper the equilibrium dislocation arrangement interms of the layer displace;gent fieldelated to the phasé

the TGB, phase is considered in the limit of low-angle grain ©f the order parametep= e'” by a decomposition

boundaries. Formally, this limit is appropriate close to the

lower critical field h,;, marking the transition from the $=P/qp=no-X—U(X), (2.9

smecticA phase to the TGB phase. In this case the dislo-

cation density is low, and it is possible to neglect the inter-whereny is a fixed unit vector. It is important to note that in

action between dislocation cores, so the dislocation core erprinciple ny can be chosen to point in an arbitrary direction
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and the elastic free energy must be invariant under rotations ¢’ (X,y,2)=z+ 0y—u(x,y— 6z). (2.9
of ny. In some sense, pickingy is like fixing a gauge. Drop-

ping the constant terms, choosingto be in thez direction, ~We can read the decompositi@h8) in two ways. In the first
and denotingh—n, as dn, 2qg|,/,|2cH asB, 2q%|'/’|2CL version, it defines the rotated elastic fiald(x,y,z) with
asD, we have, to quadratic order ifn respect tm(’)=2+ oy:

F=%f d3X[B(3,u)2+D(V u—n)2+Ky(V, - 5n)2 W2 = Uy = 02, 29
The corresponding transformation 8 is
+K,(V, X n)2+Ks(d,6n)2]. (2.2

on'(x,y,z)=én(x,y— 0z). (2.10
This form of the smectic elastic free energy is known as the
harmonic approximation. Note that the de Gennes free enf we consider the effect of rotations in Fourier space, we
ergy and, consequently, the elastic free end®&y9) derived note that if
from it are invariant with respect to small rotations but not

with respect to arbitrary rotations. Therefore, their validity is d3q S

limited to only those smectic configurations where the smec- g(x,y,z)= f ——9(dx,dy,q,) €' e e,

tic layer normalN and the nematic directar do not deviate (2m)

significantly fromn,. (2.11

The EuIer-L_agrange equations derived from the free_ eNihen it follows that
ergy (2.2 are linear, so it is easy to construct new solutions
by superimposing the ones already known. To do this, we

"(dx,Qy,9,)~ ,0y— 64,,d,+6q,). (2.1
will exploit an underlying symmetry of the full theorl.2). 9'(Gx Gy, d2)~9(0x. Gy~ 60,0, 60y). (2.12

Under an arbitrary rotatioR, ¢, andn transform as The second interpretation of E(.8) is as a definition of
1) — the rotated field)” with respect to the original,=z. In this
X) = ¢(RX), 2.3 o 0=
¢'0)=¢(Rx) @3 case, the transformed elastic fields acquire an extra
n’(x)=R~n(Rx). (2.4) asymptotic term, linear iry:
u”(x,y,z)=—0y+u(x,y— 6z), (2.13

The displacement field’ inherits its transformation proper-
ties through its definitiom=n,-x— ¢. In general this trans- .
formation is nonlinear in the rotation angle However, on"(x,y,z)= 0y + on(x,y — 0z). (2.14
since we are interested in small rotations, we may expand the ] - ] )
transformation lawg2.3) and (2.4) in the rotation angleg Even if we have a superposition of sources of different ori-
and keep only the linear terms. entation, the elastic fields,, &n’, produced by individual

Consider the distortion fields and 6n produced by a sources are all defined with respect to the same fiducial
linear source perpendicular to undistorted smectic layers athoice of n0=2, SO it is consistent to superimpose these
infinity. We will construct rotated solutions by modifying fields and claim that this superposition of fields is the solu-
simpler solutions: without loss of generality, we initially take tion for the superposition of sources:
our source to point along theaxis. If we choose,=z, the
distortion fields will be independent af ara a_ pata

P usupe(x,y,z)=z [— 0“1 x+u(x, —x{—0%t*z)],

d(X,y,2) =z=Uu(X,y), (2.5 (2.15

on(x,y,z)=on(x,y). (2.6)
ONgypekX,Y,2) = Z [ 691+ én(x, — X[ — 0“t*z)].

We may construct a solution that corresponds to a superpo- “ (2.16
sition of sources that intersect tixg plane at §%,y*) and '

oriented alongNg§=2z+ 6°t*, wheret® is a unit vector or- whereug,erand ong,perare the total displacement and direc-

thogonal toz and *<1. First, consider what happens to the tor fields, respectively. The asymptotic parts of the distortion
original solution if the system undergoes a rigid physicalfields are absolutely essential in formulating global geomet-
rotation about axis by a small angl®. The phase function ric constraints on smectic configurations, in particular, for

¢ is a scalar, so the transformed function is just the originadistinguishing different types of dislocations. When con-
function of the transformed coordinates: structing linear superpositions of defects we must make sure

that the layer normals are unambiguously defined every-
o' (X,y,2)=¢(x',y',2)=p(X,y— 62,2+ 0y). (2.77  where. Fortunately, the terms linear yndrop out of the
energetics. As a result we are free to use eithék,y,z) or
In terms of the original elastic field, the transformed phase u”(X,y,z) in our calculations. We will exploit this fact in the
function is next section.
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. INTERACTION ENERGY OF SCREW DISLOCATIONS outside the core is necessarily distorted, and these distortions
give rise to the elastic enerdy,, of the dislocation.

The structure of the distortion fields induced by a dislo-

Dislocations in smectics are linear topological defects ofcation depends significantly on the orientation of the dislo-
the lamellar structurg2,17]. In the presence of dislocations, cation core with respect to the smectic layers. This orienta-
it becomes impossible to devise a consistent global numbetion reflects the physical nature of the dislocation. We may
ing scheme for the smectic layers. In other words, the phasgonsider the Volterra construction for two classes of defects
field ® cannot be defined as a continuous field for the wholg2]. One way to produce a dislocation in a smectic is to force
region where the smectic order parameter is defined. If @he layers to wind in a helical fashion, which causes the core
closed contour surrounds a dislocation core and one insists be perpendicular to the smectic layers at infinity. A physi-
that @ be continuous, then the phase differences along theally different procedure is to remove half a layer, which

A. Screw dislocations vs edge dislocations

contour will add up to a multiple of 2: makes the core parallel to the layers. Dislocations of the first
type are known as screw dislocations and of the second type
% db=2mn. (3.))  @s edge dislocations.
Now let us turn to calculation of the elastic energy of a

- . . system of screw dislocations. The program is to construct an
However, it is possible to break the space into a number Oéppropriate dislocation density(x) and then minimize the

overlapping regions and defin for each region in such & gmectic elastic free energy while requiring compliance with
way that local definitions ofb differ in the intersections of Eq. (3.4). If we restrict our consideration to systems of
regions only by a constant. In this case the gradient Ml o511y parallel screw dislocations with separations large
is globally defined(single-valued and c-ontlnuoljslf we compared to the preferred layer spacihgthen the criteria
choose the same “gauger, for each region, then the field o the validity of the harmonic approximation are met and
v=-V, u deflned byV ¢EV(<I>/q0)=no+v- will be also  \ye can use the elastic free ener@y?).

globally consistent. In terms of, the above integral can be  First, consider a single screw dislocation at the origin.
rewritten as The corresponding dislocation density is

5£ v-di=nd. (3.2 b (%) =2d5(X) 3(y). 3.5

It is convenient to represent a dislocation line of strength T we make the natural choice,=2z, the distortion fields/
and positionx=x(l) by a singular dislocation density a_\nd §n are cylindrically symmetnc..lt turns out that the cy-
lindrical symmetry and the topological conditig8.4) com-

dx(l) 4 pletely determine the-field.
di ns®(x—x(1)). 3.3 An immediate consequence of the cylindrical symmetry
of v and én is that their derivatives in thedirection vanish:

With its help, the integral relatiof8.2) can be turned into a 9-v=0, d,6n=0. Thex andy components of the topologi-

b(x)=df dl

differential form: cal condition(3.4), imply thatd,v,=0 andd,v,=0. It then
follows thatv, is constant, set to zero by the boundary con-
V Xv=Db(x). (3.9 ditions at infinity:
For a system of dislocations, the density is constructed by v,=0. (3.6

superimposing densities of individual lines in the fof&3).
Clearly, this procedure guarantees that all integrals in th@herefore, the layer displacement fields independent of,
form (3.1 or (3.2) will have the right value. In the most and the distortion fields induced by a single screw disloca-
general case, distributions of dislocations can be continuousion are of the type considered in the previous section. Thus,
In principle, any functionb(x) can be considered to be a we may construct the distortion fields for the entire system of
dislocation density as long as it satisfies a conservation lawearly parallel screw dislocations by the superposition pro-
V -b=0, which says that dislocation lines cannot end insidecedure of Eqs(2.15 and(2.16).
the system. There is another constraint on the distortion fields im-
The integral constraint8.1) and(3.2) or their differential  posed by the cylindrical symmetry. Sinégv andd,én van-
equivalent(3.4), define dislocations topologically, but by ish, the compression term and the bend term drop out from
their nature they are incapable of determining how dislocathe elastic free energ§2.2). The remaining terms involve
tions are actually arranged in physical systems. To undemnly the radial and azimuthal components of the distortion
stand that, we need to look at dislocations as physical objecf&elds. Moreover, there is no term that mixes different com-
that have energy. There are two contributions to the dislocaponents. Observe that the topological conditi@¥) fixes
tion energy. The core enerdi,c arises from the destruction the azimuthal component of Among all configurations of
of the order parameter in the core region. It is proportional tahe distortion fields with fixed azimuthal components, the
the total length of dislocation lines in the system, but doesonfiguration withv,=0, én,=0 has the lowest energy.
not depend on the details of the smectic configuration outsid&his means that the distortion fields induced by a single
the core. Still, for topological reasons, the smectic structurescrew dislocation are not only cylindrically symmetric, but
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also have a single azimuthal component. A vector field ofrespect to the direction af , . Equation(3.12 eliminates the
such structure is solenoidal, and we can conclude that longitudinal component, so we have

V-v=0, S vq,)=ixba.) (313
V.5n=0. (3.9 . al |

The last relation eliminates the splay contribution to the elaswhere in the case of a single screw dislocatibtg)
tic free energy. Although Eq¢3.6), (3.7), and(3.8) are ob-  _74 5(q ). The nematic director tilt fieldn can be obtained

tained for a single screw dislocation, the superposition pros.om the Euler-Lagrange equations derived from the elastic

cedure guarantees that they remain valid even for thgee energy(2.2). Earlier we discovered that the compres-
distortion fields produced by arbitrary systems of screw diSgjon hend, and splay terms drop out. Then the elastic free
locations as long as the harmonic approximation is appll-energy reduces to

cable.

A simple argument shows that E@.7) cannot hold in the
presence of edge dislocations. Consider a single edge disld~-= > d3X[D(V  u+ 6n)%+K,(V, X 6n)?]
cation oriented in thg direction. As in the case of a screw
dislocation, the translational symmetry of the distortion d%q
fields in the core direction together with the topological con- = —f ———[D|v(g,)—én(q )|+ K,lg, X én(q,)|?].
dition (3.4) makes thev-field orthogonal to the core direc- 2J) (2m)?
tion, sovy,=0. ThenV -v reduces to),v,+d,v,. It is easy (3.14
to check thav,v, andd,v, have the same sign everywhere,

so Vv never vanishes. The presence of additional edge disyariation of Eq.(3.14) with respect tau and én leads to the

locations does not modify this conclusion. following Euler-Lagrange equations:
Thus we see that in the harmonic approximation, the con-
straint (3.7) provides a very clear distinction between sys- V., - (v=68n)=0, (3.15

tems of pure screw dislocations and other dislocation sys-

tems. Note that Eq$3.6) and(3.7) imply that smectic layers 1

in the presence of screw dislocations are minimal surfaces, v? on=—(on-v), (3.19
which are defined as surfaces of zero mean curvatui igf A

a field of unit normals to a family of surface$(x,y,z) . ) .

= const filling the space, then the mean curvature of the sutwherex=»x,=(K,/D)*“is the twist penetration depth. The
faces in the family is proportional t8 - N [18], the multipli- first equation is a_utomatycally sat|§f|ed. The solution of the
cative constant chosen by convention. The field of unit norS&cond equation in Fourier space is

mals to the smectic layers is )
A\

Vo P4V 5”((h)=mv(ql)- (3.19

= = . 3.9
Vol  J1+20,+V2 39
In real space, the solutions for the distortion fields in polar

Sincev, vanishes|V ¢|=1+ O(v?). So in the harmonic ap- coadinatesp and ¢ are
proximation the denominator is unity, and

N

d
V-N=V.v=0. (3.10 v= meqs, (3.18
B. Elastic energy of screw dislocations d
Following [2], we can obtain an explicit solution for the v on= walcl(p/)\)e¢’ (319

distortion fields induced by a single screw dislocation. Vhe

field is determined by equation8.4) and (3.7) with b(x) where/C; is the modified Bessel function of order 1. Substi-
given by Eq.(3.5). At infinity the smectic layers are undis- tuting the distortion field$3.13 and(3.17) into the elastic
torted, sov—0 asp—. To emphasize that the problem is free energy(3.14), we find that the elastic energy cost per
in fact two-dimensional, we rewrite Eq&3.4) and(3.7) as unit length of a single screw dislocation is

V. Xv=b(x), (3.1 FO 1

= Ddzf dq ! (3.20
V,.v=0. (3.12 L 2 (2m)? q2+1n? '

For our purposes, it is convenient to solve these equations iSince the smectic order exists only outside the dislocation
Fourier space. A general solution to E8.11 can be de- core, the integration region has to be restricted to the disk
composed into longitudinal and transverse components withg | | <1/a, wherea is the core radius. Then the integral gives
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)\2
)
aZ

F Dd2|
L 8w :

. (3.21) btgb(x,y,z)zidﬁ(x)n;w S(y—nly), 4.3

Note that in the extreme type | systems-0, so there is no wherel 4 is the spacing between defects alongylais. The

elastic contribution to the screw dislocation energy in thelayer tilt v induced by the sourc&.3) can be obtained by

harmonic approximatiof4,17. superimposing the contributions of individual dislocations
It is straightforward to generalize E¢3.20 to an arbi- (3.18:

trary density of screw dislocations parallel to thaxis:

©

d y—nly

F d? 1 (X Y)=5— > S, (4.9

e[ S bl @22 I 2w Syl

L (2m)? g2+ 1/

_ d “

where the scalar areal dislocation dendifyy ) is defined vy(X,y)=— o E > X 2 (4.5
H Iy z H - T n=—o —
via b(q)=2b(q.,) 8(a,) = 2d 8(0,) = sexpicXexplicly.)- n=me X (y=nlg)

The sums can be computed explicitly with the help of the
Poisson summation formu[d.9]:

A twist grain boundary separates two smectic domains

IV. INTERACTION OF TWIST GRAIN BOUNDARIES

with layer normals that, while pointing in different direc- _d sin 2my/lq 6
tions, remain perpendicular to some axis. Physically, it can vX_ZId cosh 27x/14—cos 2zy/l 4’ '
be implemented as an array of equidistant parallel screw dis-
locations. In this case topology imposes a constraint on the d sinh 27x/14
layer rotation anglé\ ®. Rewriting the topological condition Vy= "5 — . (4.7
(3.1) in terms of the layer normal and the local layer spacing 214 cosh 2mx/l4=cos 2my/lq
d(x) 4], The limiting form ofv, andv, for large|[x| is
N dl= 4.1
dxy 4= 4.1 V(X— + )= ifg/, 4.9
d

If we consider a rectangular integration path in gyeplane ) . )
that surrounds one=1 defect then, withd fixed, we find which shows that the smectic layers undergo a rotation by
that d/ly about thex axis as they cross the dislocation array at

x=0. While the director relaxes to the layer normal in a
distance of the order of the twist penetration depthve see

lq
gLON+—oN_]=1, (4.2 that the smectic layers relax to the undistorted asymptotic
configuration within a distanck; of the grain boundary.
where SN is the projection olN onto thexy plane,d is the The intensive energetic characteristic of a twist grain

equilibrium layer spacing anty; is the dislocation spacing. Poundary is the elastic energy per unit area. It can be com-
This change corresponds to the rotation of smectic layers bRuted by the following limiting procedure. Instead of an in-
A® =2 sin Yd/2ly), which becomesi/|4 in the low-angle mlte dl_slocatlon array(4.3), COI"ISId(.EI‘ an array orN. screw
limit. It should be emphasized that although the rotationdislocations. The array extension in thedirection isNlg.
angle of the smectic layers is dictated by topology, topologytS elastic energy=¢(N) is given by Eq.(3.22. Then the

in no way requires a specific orientation of defects in the€lastic energy per unit interval of theaxis of a complete
grain boundary with respect to the smectic layers at infinity fWist grain boundary can be taken as a limit of the ratio of
Rather, this orientation is determined energetically. Leavingh® energy of a finite array to its extension in theirection:

a detailed comparison of energetics of various dislocation
systems outside the scope of this paper, here we will assume Figh i Fel(N)
that pure screw dislocation systems are energetically prefer- lg
able to systems of screw-edge dislocations with similar ge-

ometry and consider only those configurations of defects ang, jmplement this limit, we should consider the square of the
smectic layers that correspond tq pure screw t_jlslocatlpn SY$implitude of the areal dislocation density

tems. The formalism developed in the preceding section ap-

4.9

N— o

plies specifically to this kind of system. N N
The above result regarding the rotation angle of the smec- |H|2: dZE 2 exfligl4(n— n)]J. (4.10
tic layers can be also obtained by considering the distortion n=1np'=1

fields. If the plane of the boundary is tlyg plane and the .
dislocations are parallel to the axis, then the dislocation As N—o, note thaljb|2/N—>E;°=,wexp[iqyldn} and thus the
source has the following form: energy per unit area of a twist grain boundary is
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FO pg2 & d2q  eldylan =d/ly. The dislocation density for this complexion is the
_lgb_ i f—22—2 (4.1)  sum of the contributions from the two grain boundaries,
A 24 0T ) (27)2 2+ 1 =b{)+b), where

Note thatF,,/A may be broken into an extensive part and | (1) 15 ° —iq,l/2 _
the interaction part. This corresponds to a separation of thebtgb(qx’qy’%) [z=(0r2)y]2mde oLa.~(012)qy]
n=0 term from the rest of the sum:

X > exfdi(ay+6q/2)nly], (415

Flgg _1FG Fayl)
AL LA 4.12
‘ bE(ax .y ) =[2+ (612 Y12 mdeN 25 [0, +(612)q ]
The interaction part:itg‘b can be written as a sum over con- o
tributions of dislocation pairs at distancks?2ly, . . .: X D exdi(q,—0q,/2)nly]. (4.16
n=-—ow
int 2 = 2 iqylgn
Figs(1) - % f d’q e We may transform the sums in the above expression into a
A 214 n==o (2m)?% q2+1N? sum of delta functions via the Poisson summation formula:
Dd? & (= d | b{)( )
- f &M tgb qxvqyyqz
2lg n=1 ) w27 \/q§+ 1?2 . . 2md o
=[z—(0/2)yl5[q,~ (0/2)qy]——e "%
, - P
~ Dd Sk [4n 41
= 2al, & ol ) 413 -

X > 8
m

2mm
qy+ 0q,/2— _Id } (4.17)

where Ky is the modified Bessel function of order zero. As
expected, this result closely resembles the interaction energy

(2)
of parallel vortices in the London lim[20,21]: bign(x Ay G2)
i 5 ° 2md o
Fabr 1 ®F SS (r”) =Lzt (012)ylolaz+ (0/2)qy et
= Kol =1, 4.1
A g T o (419 -
27m
_ . X >, 5{qy— 6q,/2— |_} (4.18

where®,=2xfic/e* is a quantum of the magnetic flur, m=—o d
is the vortex areal density, ardis the magnetic field pen-
etration depth. By virtue of linear superposition, the energy of this disloca-

Our next goal is to compute the interaction energy of twisttion density will be the sum of three terms. Two of these
grain boundaries. Before we consider the grain boundarjerms are simply the self-energies of the two individual grain
system in the TGR phase, let us limit our consideration to boundaries that we have calculated above. The interaction
systems of finite number of parallel low-angle grain bound-energy comes from the cross term that is of the form:
aries that are sufficiently separated so that the harmonic ap-
proximation(2.2) is applicable. Again, topology completely A d3q , A
determines the relative orientations of the smectic layers in F;gi,(z,l):zj 3b&),"(q)Mi,—(q)b%ﬁ"(—q),
different smectic blocks. To ensure that the defects are pure (2m)
screw dislocations, we require that the defects in adjacent (4.19

grain boundaries be rotated y® =d/l4 and, in addition,

that the outermost smectic blocks be rotated by the sam@n€reM;;(a) is the general interaction kernel that accounts
angle, but in the opposite directions with respect to the defor Poth screw and edge dislocatior®. Upon inspection of

fects in the middle of the system. In comparison with theEdS:(4.17 and(4.18, we note that(1) Since @/I) =6 the
calculation for a single grain boundary, we are dealing nowy components of the dislocation densities may be ignored
with more general defect systems where not all defects argince we are only working to quadratic orderdir- AO, and
parallel to each other. Our formalism easily handles this situ¢2) in the producb{}b{3) only them=0 terms in Eq(4.17
ation. contribute because of the delta-function constraints. As a re-

Consider a system that contains only two twist grainsult, only theq,=0 andg,=0 modes o) andb{Z) con-
boundaries separated by a distahdeom each other. The tribute. Moreover, since thgq,=0 modes of the layer nor-
angle between directions of the dislocation lines in these twenals in Eqs.(4.6) and (4.7) relax to their asymptotic values
boundaries isf=A0=d/lq. We may implement this by immediately, we see that we have constructed a globally
taking one grain boundary at=—1/2, rotated by— 6/2 and  consistent layer structure between the boundaries. Thus we
the other boundary ak=1/2, rotated by #/2 where &  may use Eq(3.22 to evaluate the interaction energy:
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V,u=-#6y, (4.26

Fig2!) Dd? 1 (= dg, €% +e 1%  Dg? A

A 20 Mg w2 g2rap? 204 Iy

(4.20 ony=6—Ce "1, (4.27

Note that since only the,=0 modes contribute, the inter- Continuity of the director forceC=A=6—B. Inserting
action energy is independent of arbitrary phason shifts of thénese solutions into into the ener¢$.14 we have

grain boundaries along In the harmonic approximation, the

interaction energy of grain boundaries in a system of several F(l)

twist grain boundaries breaks down into the sum of contri- —a ~DAM(B— 0)%+B? coth(I/21)]. (4.28
butions of individual grain boundary pairs. Since the har-
monic theory admits linear superposition, the resdl20
can be applied to any angle of rotation at any separatams .
long as the grain boundaries are composed purely of scre\W1d

defects.

Another way to look at this result is to consider the be- ~ F(I) DAd® coth(/2x)  Dad? N
havior of the director between the grain boundaries. We may A 12 1+cotf’(|/2)\): 2|2 [1+e 7.
expand the director and displacement fields in Fourier modes d d (4.29
at all the reciprocal lattice vectorG. In the harmonic ap- ’
proximation, director and displacement fields from different ; RS
sources add linearly. Thus if no pairs of grain boundariesThe energy of interaction is simply
have dislocation axes parallel or antiparallel and dislocations
in each boundary are straight, each distortidisplacement A_F_ F()—F(«) _ Ddz)\e—llx (4.30
ug or éng) for a given reciprocal lattice vect@®+ 0 arises A A - 212 ’ :
from a unique grain boundary. Thus finite reciprocal lattice
vector distortions from different grain boundaries do not in-
teract. Each grain boundary, however, producé3=a0 di-
rector distortiondng, which is sensitive to the presence of
other grain boundaries. The origin of interactions betwee
grain boundaries is thugng, and we can calculate these
interactions by applying appropriate boundary condition to
ény. For an isolated grain boundar§n,=(0,6n,,0) reaches V. TGB, PHASE

constan'g as*;ympgouc(;/alur?s OI (joe)t' tlf t?ﬁre |shrr:ﬁre thaln In the preceding section we showed that in a system com-
gnte grgmd gurlha%.nlo 6;.3 0 ro ale nroug ﬁ a;ng gs posed of finite number of low-angle twist grain boundaries
etermined by the disiocation complexion in a Shorter dis+, energy of the dislocation interaction within a grain

ta?”ce aﬂd at great_er energy cost. Consider two wa_lls W'“Boundary and the energy of the interboundary interaction
dislocation separatlohj_ Ioca_ted_a1x=_ /2. If we consider decay exponentially with distance. It suggests that the dislo-
Egs. (3.19 anq (3.1§ in this situation we see thl , -v cation arrangement in the T@Bohase could be treated as
=V, '?n:O since bothv and én only have components well within the same computational framework, even though
alongy but only depend ox. Thus Eq.(3.16) becomes: the angles between the directions of dislocations in the entire
system are not restricted to be small. Indeed, when the grain
) 1 boundaries are low angle, the dislocations that cannot be
‘9x5”y:F[5”y+VLU]- (4.2 described as nearly parallel are separated by the distance of
many grain sizes, . It is reasonable to hope that we can find
a regime wheré,, is sufficiently large so that the interaction
part of the TGR, elastic free energy density is dominated by
the interaction of the dislocations in a few nearby grain

Minimizing over the free paramet&and usingd=d/l 4, we

which agrees with our previous res(#t20). This shows that
the energy of interaction comes from the “confinement” of
the director—it is forced to twist from-6/2 to 6/2 in a
'Tength on the order of a fel

We have three regions to consider. ket —1/2 we have

V.ou=oy, (4.22 boundaries. In this case our formalism would be reliable.
_ (12 Provided that that we are in the correct regime, the pre-
ony=—0+Ae ' (4.23 ceding section supplies us with all the essential ingredients to
, compute the interaction energy of dislocations arranged in
while betweerx=—1/2 andx=1/2 the TGB, structure(Fig. 1). To construct an appropriate dis-
location source, we need to combine the sources for indi-
V,u=0, 424 \idual twist grain boundaries at positions Gtly,
) +2l,, ... along the pitch axis. The grain boundaries at dif-
Sn.=B sinh(x/\) (4.2 ferent positions are distinguished by the direction of defects
Yo Tsinh(l/2)\)’ ' and, in addition, might be arbitrarily shifted in the direction
perpendicular to the pitch axis. We may, through superposi-
and forx=1/2 tion, use the results from the last section to find
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0 0.05 0.1 0.15 0.2
smectic | TGB-A a =2(hd— E)/Dd? —s cholesteric

Q\( ,

FIG. 2. Dependence of the dislocation spacing within a grain
boundaryly and the grain sizd, on the control parametew
=2(hd—E)/Dd?. At some large value of there is a transition to
the cholesteric phaséat hg,) while =0 corresponds to the

smectic-TGB, transition.

FIG. 1. Schematic representation of the TGEhase.
We minimized of the energy densit$.2) with respect to

I4/\ andly4/\ numerically. The results are presented in Fig.

. (5.1 2. We can make several observations regarding our results.
As is directly evident from Fig. 2, there is a rangecoivhere
the preferred values df andl, are of severak and, more-

We can understand the interaction term by again consideringver, the ratid 4/1, is close to 1. According to the remarks at
the confinement energy of the director. In the case of the fulthe beginning of this section, this kind of geometry validates
TGB, structure, each “cell” between the grain boundariesour computational techniques. To see how much far-away
must be identical. Thus we may use E@.24) with B grain boundaries contribute to the establishment of the dis-
= 6/2 to calculate the energy for each cell. We find completdocation lattice structure, we computed the positions of
agreement with the interaction term above. minima for free energy densities obtained from E%2) by

In addition to the elastic energy of interacting screw dis-truncating the sums overto one, two, and three terms. The
locations, the total free energy of the TBtructure in- results of this computation are presented in Fig. 3, which
cludes two extensive terms that depend only on the dislocademonstrate that in the range<@< 0.2, which corresponds
tion density 1/(pl4) and not on the details of a particular to I,,l4>2.5\, the lattice structure is determined almost en-
dislocation arrangement. These terms are the extensive paittely by the interactions of nearest and next-to-nearest twist

of the screw dislocation energy density and the chiral energgrain boundaries.
A very interesting result emerges regarding the ratio of

©

1 > Ko('d_n)_i_l o bA
N l4 n=1

T n=1

2
fint — Dd
TGB 2|b|d

term:
the lattice parameterk,/l4. It turns out that the ratio is
fior=free™ faisit fon (5.2
35
Dd? |1 & lgn) A <
= | — — |+ — —Ipn/n
2plg| 7 a=1 ,CO( A ) = } 37
p(
E hd 5.3 =
e Tola’ ©3 s
where E is the energy cost per unit line of an individual 2
screw dislocation. In the free energy dendify2), the total
energy cost of dislocations given by the first two terms com-
petes with the gain in the chiral energy. The twist penetration 0 0.1 0.2 0.3 0.4
depth\ sets the length scale fog andl,. Inspecting Eg. o = 2(hd — E)/Dd?

(5.2, we see that the optimal values bf/\, |,/\ are

controlled by a single combination of the material param- F|G. 3. Dependence of the minima positions on the number of

eters terms kept in the sum over grain boundaries in the free energy
density(5.2). The style of each curve reflects the number of terms
2(hd—E) used in its computation. The upper set of curves correspohd xo
a= ———- . (5.4 while the lower curves correspondltp/\ . The solid curves are the
Dd? same curves as in Fig. 2.
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0.96 a = 2(hd — E)/Dd?
0.958 o 005 01 015 02 025 03 035 04
A
0.956 N
= 11a
= A+
0.954 - .
= 09 N
0.952 ] - a
0.8 -
0.95 I
005 01 015 02 025 03 035 04 . .
a = 2(hd — E)/Dd? 0.7
100 1005 101 1015 102

FIG. 4. Dependence df /4 on the control parameter. Note
that it is nearly independent af.

Temperature in °C

FIG. 5. Experimental dependencelgfly on temperature. The

nearly constant for a very wide range of values of the controf@t@ set marked with triangles is taken frdf], the data set
parametew (Fig. 4). This prediction should be compared to marked with boxes was provided courtesy of Navailles. The first set

the experimental values of /1, measured by Navailles and of data was taken while increasing temperature, while the latter was
co-workers[15] d taken in a run with decreasing temperature. Note that the grain

rotation angle increases from 6° for the lowest temperature to 9°
for the highest temperature.
VI. CONCLUSIONS

The theory of the screw dislocation interaction in the
TGB, phase in the low-angle grain boundary limit was con-
structed by analogy with the theory of vortex interaction in
the Abrikosov phase in the higkdimit. The resulting theory
was applied to the calculation of the lattice parameters of thdhe layer normal of this dislocation relaxes in the usual way
screw dislocation arrangement. We found that in this limitalong they direction but relaxes to its asymptotic value in the
the ratio of the two lattice parameteks/| 4 remains prati- confined region betweer=*1/2. It is straightforward to
cally constant over a very wide range of the control paramcalculate the nonlinear energy of this defect and to find the
eter. The value of the ratio is 0.95. It is interesting to note"confinement” energy by subtracting the= value. Ex-
this value is within several thousands of the value obtainegranding in powers of * we have
by Renn and Lubensidy] in the opposite limith—h,, for a
specific valueK/K,=0. Whether this is accidental or not
remains to be discovered. In contrast to the Renn and Luben-

Ty

| tan(wx/1) |’ 6.2

u(x,y)=tan !

m? 2xy(x*—y?)

2
sky result, the value dfy /1, obtained here is independent of Vius |_2 (x2+y?)2 6.3
K; and K;. This value is consistent with the experimental
data of Navailles and co-workef45] (Fig. 5).
Recent work{19] that studied the nonlinear elasticity of 1 72 2x2y2— 2y
smectic liquid crystals showed that defects in the same grain (Vu)?~ 4= = (6.4
boundary had power-law interactions. One might expect, in X2+y? 12 (x2+y?)?

general, that the interaction between grain boundaries would

remain exponential. It would seem then that the grain bound- . i

aries would move closer together as the defects in the boundt S clear t?at thel dependence (zfzthe confinement energy
aries would move further apart, casting some doubt on ougcales as™ = that can balance thig “ interaction found be-

result(and on experimeitIn the absence of director modes, tween defects in the same grain boundtg]. We shall
the nonlinear elasticity i§19] explore this further in future work.
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