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Dislocation geometry in the TGBA phase: Linear theory
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~Received 17 January 2001; published 14 May 2001!

We demonstrate that an arbitrary system of screw dislocations in a smectic-A liquid crystal may be consis-
tently treated within harmonic elasticity theory, provided that the angles between dislocations are sufficiently
small. Using this theory, we calculate the ground-state configuration of the TGBA phase. We obtain an estimate
of the twist-grain-boundary spacing and screw dislocation spacing in a boundary in terms of the macroscopic
parameters, in reasonable agreement with experimental results.
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I. INTRODUCTION

Condensed matter systems offer a vast stage for the i
cate interplay between order and disorder. A beautiful
ample of such interplay is the twist-grain-boundary pha
~TGB! of chiral smectics, which is the liquid-crystalline an
log of the Abrikosov vortex state of type II superconducto
@1,2#. Morphologically, the phase consists of blocks of pu
smectic~which can be either smectic-A or smectic-C) sepa-
rated by parallel, regularly spaced twist grain boundar
where each boundary is formed by a periodic array of sc
dislocations. The direction of dislocation lines rotates by
constant angle from one grain boundary to the next. Suc
dislocation arrangement causes the smectic blocks to ro
about the axis perpendicular to the grain boundaries drag
the nematic director along. Thus the TGB structure combi
the properties of smectics and cholesterics: the nematic
rector twists on average as in cholesterics while the lame
structure of a smectic is preserved. In this paper only
TGBA phase will be considered. As suggested by its na
the smectic blocks in TGBA are smectic-A.

The analogy between the TGBA phase and the Abrikoso
vortex lattice is based on the mathematical similarity of
Gibbs free energies for metals in a magnetic field and
chiral smectics@1–4#. Their respective forms, known as th
Ginzburg-Landau free energy and the de Gennes free ene
are
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wherec is a complex order parameter,A the vector poten-
tial, H the magnetic intensity,h a chiral field determined by
molecular structure@5#, andn the unit director, often decom
posed asn5n01dn. The Ginzburg-Landau free energy~1.1!
defines two characteristic length scales: the order param
coherence lengthj5(\2/2m* ur u)1/2 and the magnetic field
penetration depthl5(m* c2g/4pme* 2ur u)1/2. Their ratio k
5l/j, called the Ginzburg parameter, controls the phase
gram as a function of temperature and external magn
field. When the Ginzburg parameter is less than the crit
value kc51/A2, the system is type I, and there is a firs
order transition between a normal metal in a field and
Meissner phase withc5const5” 0 and magnetic fieldB50.
Whenk.kc , the system becomes type II, and a new ph
intervenes between the normal-metal state and the Meis
state. This new phase, the Abrikosov flux phase, is cha
terized by a proliferation of linear topological defects of t
complex order parameter fieldc. The defects are magneti
flux lines, and they form a two-dimensional triangular latti
throughout the phase.

A very similar phenomenon occurs in chiral smectic
only the situation becomes somewhat more complicated
cause of anisotropy of the de Gennes free energy~we note
that the theory of anisotropic superconductors is equ
complex, see, e.g.,@6#!. Instead of a single order paramet
coherence lengthj, there are two lengths: the transverse c
herence lengthj'5(C' /ur u)1/2 and the longitudinal coher
ence lengthj i5(Ci /ur u)1/2. But since the values ofC' and
Ci can be made equal by rescaling of coordinates, we
not be concerned with making distinctions betweenj' and
j i and assumej''j i'j. The chiral smectic analog of th
magnetic field penetration depth is the twist penetrat
depthl25(K2g/2Cq0

2ur u)1/2, whereC'C''Ci . As in su-
perconductors, the chiral Ginzburg parameterk25l2 /j in
liquid crystals determines the structure of the phase diag
as a function of temperature and chiral couplingh. Again, a
defect phase, which is now the TGBA phase, appears on th
phase diagram whenk2.1/A2. Linear topological defects in
the TGBA phase are screw dislocations arranged in tw
grain boundaries.

An important problem in the theory of the defect phas
predicted by the Gibbs free energies~1.1! and ~1.2! is to
relate the lattice parameters of defect lattices to the coup
strengths that enter these energies. This is rather complic
©2001 The American Physical Society02-1
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because the Gibbs energies~1.1! and ~1.2! include fouth-
order terms that lead to nonlinear Euler-Lagrange equati
Nevetheless, since the publication of Abrikosov’s paper o
44 years ago@7#, an extensive body of both experimental a
theoretical work on the vortex arrangement in the Abrikos
phase has been performed, covering all possible ranges o
external magnetic field, temperature, and Ginzburg par
eter @8,9#. In contrast with this happy situation in superco
ductors, there is only a small literature that address
liquid-crystal version of the problem, namely, the determin
tion of the grain-boundary spacingl b and the dislocation
spacingl d within a grain boundary. In part this is due to th
fact that rotation of defects in TGBA makes this version o
the problem more complicated.

In their original paper@1# Renn and Lubensky considere
the TGBA lattice structure near the upper critical fieldhc2
marking the transition from the cholesteric to the TG
phase. They employed a model free energy withC'5Ci and
K15K3[K. Additionally, they assumed that the twist pitc
is very large in comparison to a smectic layer spacing. Un
these assumptions, in a calculation that parallels Abrikoso
calculation@7#, they computed the ratiol b / l d for k250.80
.1/A2 and various values ofK/K2. They found thatl b / l d
increases from 0.95 forK/K250 to 1.45 forK/K25104. In
other words,l b / l d is sensitiveto the relative values of the
Frank elastic constants. Our approach, which applies n
Hc1, is applicable when the rotation angle between conse
tive smectic blocks is small, predicts a value close to 0.95
all values ofK/K2.

Experimental determination of the TGBA lattice param-
eters has proven to be a difficult task. Early experime
@10–13# were crucial in establishing the existence of the d
fect phase of chiral smectics and confirmed that the morp
ogy of this phase agrees with the predictions of Renn
Lubensky. However, in all these experimentsl b and l d were
estimated rather than measured. Recently an extensive s
tural study of the TGBA phase occurring in a series of chir
tolane derivatives@14# was undertaken by Navailles an
co-workers@15#. They observed an x-ray diffraction patte
in the transverse direction to the pitch axis that consisted
discrete Bragg spots, which provided a direct way to m
sure the rotation angleDQ of smectic blocks. Since the
smectic layer spacingd is easy to measure in the same e
periment, it has now become possible to obtain the pre
values ofl d via d/2l d5sin(DQ/2). As an additional benefit
the information regarding the number of smectic blocks
pitch provided a way to compute the block size from t
pitch values measured in a different set of experiments ba
on the observation of the Grandjean-Cano steps@16#. The
ratio l b / l d was found to vary from 0.74 to 1.08. Whereas t
exact valuel b / l d is up to interpretation, these experimen
are a clear indication that this ratio remains close to 1.

In this paper the equilibrium dislocation arrangement
the TGBA phase is considered in the limit of low-angle gra
boundaries. Formally, this limit is appropriate close to t
lower critical field hc1, marking the transition from the
smectic-A phase to the TGBA phase. In this case the dislo
cation density is low, and it is possible to neglect the int
action between dislocation cores, so the dislocation core
06170
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ergy associated with destruction of the order parame
produces an extensive term in the total free energy. Thus
this case, the lattice structure is determined completely
the elastic energy cost of the distorted smectic structure
duced by the presence of screw dislocations. In the langu
of superconductivity, this is the London limit of th
Ginzburg-Landau equations. For our analysis, this me
that the results for the structure of a single vortex and
systems of parallel vortices obtained in the theory of sup
conductors may be directly translated to the language of
uid crystals using the Gibbs energies~1.1! and ~1.2! as a
dictionary. We will show that there is a simple way to ge
eralize the results for parallel dislocations to the case of
teracting twist grain boundaries. In the low-angle limit, t
rotation angle is a natural small paramater, and to the low
order in this parameter, the interaction energy of two tw
grain boundaries composed ofdiscrete linear defects turns
out to be the same as that of grain boundaries withcontinu-
ous defect distribution. This observation allows us to com
pute the energy cost for the dislocation arrangement in
TGBA phase analytically.

The paper is organized as follows. Section II introduc
the elastic fields suitable for type II smectics-A. We construct
the elastic free energy functional in the harmonic approxim
tion. We demonstrate that if we have a solution for the el
tic fields uniform in the direction of the layer normal at in
finity, it is possible to construct more general solutions
superimposing shifted and rotated copies of the original
lution. In Sec. III we show that in the harmonic approxim
tion, systems of pure screw dislocations in smectics are
tinguished from other dislocation systems by a constra
that sets the smectic layers to be minimal surfaces. We c
pute the distortion fields and the elastic energy of system
parallel screw dislocations. In Sec. IV we calculate the el
tic energy of an individual twist grain boundary and the i
teraction energy of two twist grain boundaries. In Sec. V
obtain the elastic energy density for the TGBA phase. Adding
two extensive terms to it, we construct the total free ene
density. Its minimization yields preferred values for the gra
boundary spacing and the dislocation spacing within a gr
boundary for the given values of material parameters.
find that in the low-angle regime the ratiol d / l b is practically
constant over a wide range of the control parameters, an
value is 0.95.

II. SUPERPOSITION OF SOLUTIONS
FOR DISTORTION FIELDS

The elastic free energy for smectics-A directly follows
from the de Gennes free energy~1.2! by assumingucu2 to be
fixed. Because the smectic density is rapidly varying, it
standard to write down the elastic free energy of smectic
terms of the layer displacement fieldu related to the phaseF
of the order parameterc5eiF by a decomposition

f[F/q05n0•x2u~x!, ~2.1!

wheren0 is a fixed unit vector. It is important to note that i
principle n0 can be chosen to point in an arbitrary directio
2-2
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DISLOCATION GEOMETRY IN THE TGBA PHASE: . . . PHYSICAL REVIEW E 63 061702
and the elastic free energy must be invariant under rotat
of n0. In some sense, pickingn0 is like fixing a gauge. Drop-
ping the constant terms, choosingn0 to be in theẑ direction,
and denotingn2n0 asdn, 2q0

2ucu2Ci asB, 2q0
2ucu2C'

asD, we have, to quadratic order indn

F5 1
2 E d3x@B~]zu!21D~“'u2dn!21K1~“'•dn!2

1K2~“'3dn!21K3~]zdn!2#. ~2.2!

This form of the smectic elastic free energy is known as
harmonic approximation. Note that the de Gennes free
ergy and, consequently, the elastic free energy~2.2! derived
from it are invariant with respect to small rotations but n
with respect to arbitrary rotations. Therefore, their validity
limited to only those smectic configurations where the sm
tic layer normalN and the nematic directorn do not deviate
significantly fromn0.

The Euler-Lagrange equations derived from the free
ergy ~2.2! are linear, so it is easy to construct new solutio
by superimposing the ones already known. To do this,
will exploit an underlying symmetry of the full theory~1.2!.
Under an arbitrary rotationR, f, andn transform as

f8~x!5f~Rx!, ~2.3!

n8~x!5R21n~Rx!. ~2.4!

The displacement fieldu8 inherits its transformation proper
ties through its definitionu[n0•x2f. In general this trans-
formation is nonlinear in the rotation angleu. However,
since we are interested in small rotations, we may expand
transformation laws~2.3! and ~2.4! in the rotation angleu
and keep only the linear terms.

Consider the distortion fieldsu and dn produced by a
linear source perpendicular to undistorted smectic layer
infinity. We will construct rotated solutions by modifyin
simpler solutions: without loss of generality, we initially tak
our source to point along theẑ-axis. If we choosen05 ẑ, the
distortion fields will be independent ofz:

f~x,y,z!5z2u~x,y!, ~2.5!

dn~x,y,z!5dn~x,y!. ~2.6!

We may construct a solution that corresponds to a supe
sition of sources that intersect thexy plane at (xa,ya) and
oriented alongN0

a5 ẑ1uata, where ta is a unit vector or-

thogonal toẑ andua!1. First, consider what happens to th
original solution if the system undergoes a rigid physi
rotation aboutx axis by a small angleu. The phase function
f is a scalar, so the transformed function is just the origi
function of the transformed coordinates:

f8~x,y,z!5f~x8,y8,z8!5f~x,y2uz,z1uy!. ~2.7!

In terms of the original elastic fieldu, the transformed phas
function is
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f8~x,y,z!5z1uy2u~x,y2uz!. ~2.8!

We can read the decomposition~2.8! in two ways. In the first
version, it defines the rotated elastic fieldu8(x,y,z) with
respect ton085 ẑ1u ŷ:

u8~x,y,z!5u~x,y2uz!. ~2.9!

The corresponding transformation ofdn is

dn8~x,y,z!5dn~x,y2uz!. ~2.10!

If we consider the effect of rotations in Fourier space,
note that if

g~x,y,z!5E d3q

~2p!3
g~qx ,qy ,qz!e

iqxxeiqyyeiqzz,

~2.11!

then it follows that

g8~qx ,qy ,qz!'g~qx ,qy2uqz ,qz1uqy!. ~2.12!

The second interpretation of Eq.~2.8! is as a definition of
the rotated fieldu9 with respect to the originaln05 ẑ. In this
case, the transformed elastic fields acquire an e
asymptotic term, linear iny:

u9~x,y,z!52uy1u~x,y2uz!, ~2.13!

dn9~x,y,z!5u ŷ1dn~x,y2uz!. ~2.14!

Even if we have a superposition of sources of different o
entation, the elastic fieldsua9 , dna9 produced by individual
sources are all defined with respect to the same fidu
choice of n05 ẑ, so it is consistent to superimpose the
fields and claim that this superposition of fields is the so
tion for the superposition of sources:

usuper~x,y,z!5(
a

@2uata
•x1u~x'2x'

a2uataz!#,

~2.15!

dnsuper~x,y,z!5(
a

@uata1dn~x'2x'
a2uataz!#.

~2.16!

whereusuperanddnsuperare the total displacement and dire
tor fields, respectively. The asymptotic parts of the distort
fields are absolutely essential in formulating global geom
ric constraints on smectic configurations, in particular,
distinguishing different types of dislocations. When co
structing linear superpositions of defects we must make s
that the layer normals are unambiguously defined eve
where. Fortunately, the terms linear iny drop out of the
energetics. As a result we are free to use eitheru8(x,y,z) or
u9(x,y,z) in our calculations. We will exploit this fact in the
next section.
2-3
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III. INTERACTION ENERGY OF SCREW DISLOCATIONS

A. Screw dislocations vs edge dislocations

Dislocations in smectics are linear topological defects
the lamellar structure@2,17#. In the presence of dislocation
it becomes impossible to devise a consistent global num
ing scheme for the smectic layers. In other words, the ph
field F cannot be defined as a continuous field for the wh
region where the smectic order parameter is defined.
closed contour surrounds a dislocation core and one in
that F be continuous, then the phase differences along
contour will add up to a multiple of 2p:

R dF52pn. ~3.1!

However, it is possible to break the space into a numbe
overlapping regions and defineF for each region in such a
way that local definitions ofF differ in the intersections of
regions only by a constant. In this case the gradient field“F
is globally defined~single-valued and continuous!. If we
choose the same ‘‘gauge’’n0 for each region, then the field
v[2“'u defined by“f[“(F/q0)5n01v will be also
globally consistent. In terms ofv, the above integral can b
rewritten as

R v•dl5nd. ~3.2!

It is convenient to represent a dislocation line of strengtn
and positionx5x( l ) by a singular dislocation density

b~x!5dE dl
dx~ l !

dl
nd (3)

„x2x~ l !…. ~3.3!

With its help, the integral relation~3.2! can be turned into a
differential form:

“3v5b~x!. ~3.4!

For a system of dislocations, the density is constructed
superimposing densities of individual lines in the form~3.3!.
Clearly, this procedure guarantees that all integrals in
form ~3.1! or ~3.2! will have the right value. In the mos
general case, distributions of dislocations can be continu
In principle, any functionb(x) can be considered to be
dislocation density as long as it satisfies a conservation
“•b50, which says that dislocation lines cannot end ins
the system.

The integral constraints~3.1! and~3.2! or their differential
equivalent ~3.4!, define dislocations topologically, but b
their nature they are incapable of determining how dislo
tions are actually arranged in physical systems. To und
stand that, we need to look at dislocations as physical obj
that have energy. There are two contributions to the dislo
tion energy. The core energyFcorearises from the destructio
of the order parameter in the core region. It is proportiona
the total length of dislocation lines in the system, but do
not depend on the details of the smectic configuration out
the core. Still, for topological reasons, the smectic struct
06170
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outside the core is necessarily distorted, and these distort
give rise to the elastic energyFel of the dislocation.

The structure of the distortion fields induced by a dis
cation depends significantly on the orientation of the dis
cation core with respect to the smectic layers. This orien
tion reflects the physical nature of the dislocation. We m
consider the Volterra construction for two classes of defe
@2#. One way to produce a dislocation in a smectic is to fo
the layers to wind in a helical fashion, which causes the c
to be perpendicular to the smectic layers at infinity. A phy
cally different procedure is to remove half a layer, whi
makes the core parallel to the layers. Dislocations of the fi
type are known as screw dislocations and of the second
as edge dislocations.

Now let us turn to calculation of the elastic energy of
system of screw dislocations. The program is to construc
appropriate dislocation densityb(x) and then minimize the
smectic elastic free energy while requiring compliance w
Eq. ~3.4!. If we restrict our consideration to systems
nearly parallel screw dislocations with separations la
compared to the preferred layer spacingd, then the criteria
for the validity of the harmonic approximation are met a
we can use the elastic free energy~2.2!.

First, consider a single screw dislocation at the orig
The corresponding dislocation density is

b1~x!5 ẑdd~x!d~y!. ~3.5!

If we make the natural choicen05 ẑ, the distortion fieldsv
anddn are cylindrically symmetric. It turns out that the cy
lindrical symmetry and the topological condition~3.4! com-
pletely determine thev-field.

An immediate consequence of the cylindrical symme
of v anddn is that their derivatives in thez direction vanish:
]zv50, ]zdn50. Thex andy components of the topologi
cal condition~3.4!, imply that ]yvz50 and]xvz50. It then
follows thatvz is constant, set to zero by the boundary co
ditions at infinity:

vz50. ~3.6!

Therefore, the layer displacement fieldu is independent ofz,
and the distortion fields induced by a single screw dislo
tion are of the type considered in the previous section. Th
we may construct the distortion fields for the entire system
nearly parallel screw dislocations by the superposition p
cedure of Eqs.~2.15! and ~2.16!.

There is another constraint on the distortion fields i
posed by the cylindrical symmetry. Since]zv and]zdn van-
ish, the compression term and the bend term drop out fr
the elastic free energy~2.2!. The remaining terms involve
only the radial and azimuthal components of the distort
fields. Moreover, there is no term that mixes different co
ponents. Observe that the topological condition~3.4! fixes
the azimuthal component ofv. Among all configurations of
the distortion fields with fixed azimuthal components, t
configuration withvr50, dnr50 has the lowest energy
This means that the distortion fields induced by a sin
screw dislocation are not only cylindrically symmetric, b
2-4



o

las

ro
th
is
pl

is
w
on
n
-

e,
di

on
s
y

ce

su

o

-

e
e

-
is

s

wi

stic
s-
free

e
he

lar

ti-

er

tion
isk
s

DISLOCATION GEOMETRY IN THE TGBA PHASE: . . . PHYSICAL REVIEW E 63 061702
also have a single azimuthal component. A vector field
such structure is solenoidal, and we can conclude that

“•v50, ~3.7!

“•dn50. ~3.8!

The last relation eliminates the splay contribution to the e
tic free energy. Although Eqs.~3.6!, ~3.7!, and~3.8! are ob-
tained for a single screw dislocation, the superposition p
cedure guarantees that they remain valid even for
distortion fields produced by arbitrary systems of screw d
locations as long as the harmonic approximation is ap
cable.

A simple argument shows that Eq.~3.7! cannot hold in the
presence of edge dislocations. Consider a single edge d
cation oriented in they direction. As in the case of a scre
dislocation, the translational symmetry of the distorti
fields in the core direction together with the topological co
dition ~3.4! makes thev-field orthogonal to the core direc
tion, sovy50. Then“•v reduces to]xvx1]zvz . It is easy
to check that]xvx and]zvz have the same sign everywher
so“•v never vanishes. The presence of additional edge
locations does not modify this conclusion.

Thus we see that in the harmonic approximation, the c
straint ~3.7! provides a very clear distinction between sy
tems of pure screw dislocations and other dislocation s
tems. Note that Eqs.~3.6! and~3.7! imply that smectic layers
in the presence of screw dislocations are minimal surfa
which are defined as surfaces of zero mean curvature. IfN is
a field of unit normals to a family of surfacesf(x,y,z)
5const filling the space, then the mean curvature of the
faces in the family is proportional to“•N @18#, the multipli-
cative constant chosen by convention. The field of unit n
mals to the smectic layers is

N5
“f

u“fu
5

ẑ1v

A112vz1v2
. ~3.9!

Sincevz vanishes,u“fu511O(v2). So in the harmonic ap
proximation the denominator is unity, and

“•N5“•v50. ~3.10!

B. Elastic energy of screw dislocations

Following @2#, we can obtain an explicit solution for th
distortion fields induced by a single screw dislocation. Thv
field is determined by equations~3.4! and ~3.7! with b(x)
given by Eq.~3.5!. At infinity the smectic layers are undis
torted, sov→0 asr→`. To emphasize that the problem
in fact two-dimensional, we rewrite Eqs.~3.4! and ~3.7! as

“'3v5b~x!, ~3.11!

“'•v50. ~3.12!

For our purposes, it is convenient to solve these equation
Fourier space. A general solution to Eq.~3.11! can be de-
composed into longitudinal and transverse components
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respect to the direction ofq' . Equation~3.12! eliminates the
longitudinal component, so we have

v~q'!5 i
q'3b„q')

q'
2

, ~3.13!

where in the case of a single screw dislocationb„q)
5 ẑdd(qz). The nematic director tilt fielddn can be obtained
from the Euler-Lagrange equations derived from the ela
free energy~2.2!. Earlier we discovered that the compre
sion, bend, and splay terms drop out. Then the elastic
energy reduces to

F5
1

2E d3x@D~“'u1dn!21K2~“'3dn!2#

5
1

2E d3q

~2p!2
@Duv~q'!2dn~q'!u21K2uq'3dn~q'!u2#.

~3.14!

Variation of Eq.~3.14! with respect tou anddn leads to the
following Euler-Lagrange equations:

“'•~v2dn!50, ~3.15!

“'
2 dn5

1

l2
~dn2v!, ~3.16!

wherel[l25(K2 /D)1/2 is the twist penetration depth. Th
first equation is automatically satisfied. The solution of t
second equation in Fourier space is

dn~q'!5
1/l2

q'
2 11/l2

v~q'!. ~3.17!

In real space, the solutions for the distortion fields in po
coördinatesr andf are

v5
d

2pr
ef , ~3.18!

v2dn5
d

2pl
K1~r/l!ef , ~3.19!

whereK1 is the modified Bessel function of order 1. Subs
tuting the distortion fields~3.13! and ~3.17! into the elastic
free energy~3.14!, we find that the elastic energy cost p
unit length of a single screw dislocation is

Fel
(1)

L
5

1

2
Dd2E d2q

~2p!2

1

q'
2 11/l2

. ~3.20!

Since the smectic order exists only outside the disloca
core, the integration region has to be restricted to the d
uq'u,1/a, wherea is the core radius. Then the integral give
2-5
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Fel
(1)

L
5

Dd2

8p
lnS l2

a2
11D . ~3.21!

Note that in the extreme type I systemsl→0, so there is no
elastic contribution to the screw dislocation energy in
harmonic approximation@4,17#.

It is straightforward to generalize Eq.~3.20! to an arbi-
trary density of screw dislocations parallel to thez axis:

Fel

L
5 1

2 DE d2q

~2p!2

1

q'
2 11/l2

ub̄~q'!u2, ~3.22!

where the scalar areal dislocation densityb̄(q') is defined
via b(q)[ ẑb̄(q')d(qz)5 ẑdd(qz)(aexp$iqxxa%exp$iqyya%.

IV. INTERACTION OF TWIST GRAIN BOUNDARIES

A twist grain boundary separates two smectic doma
with layer normals that, while pointing in different direc
tions, remain perpendicular to some axis. Physically, it c
be implemented as an array of equidistant parallel screw
locations. In this case topology imposes a constraint on
layer rotation angleDQ. Rewriting the topological condition
~3.1! in terms of the layer normal and the local layer spac
d(x) @4#,

R N

d~x!
•dl5n. ~4.1!

If we consider a rectangular integration path in thexy plane
that surrounds onen51 defect then, withd fixed, we find
that

l d

d
@dN12dN2#51, ~4.2!

wheredN is the projection ofN onto thexy plane,d is the
equilibrium layer spacing andl d is the dislocation spacing
This change corresponds to the rotation of smectic layers
DQ52 sin21(d/2l d), which becomesd/ l d in the low-angle
limit. It should be emphasized that although the rotat
angle of the smectic layers is dictated by topology, topolo
in no way requires a specific orientation of defects in
grain boundary with respect to the smectic layers at infin
Rather, this orientation is determined energetically. Leav
a detailed comparison of energetics of various disloca
systems outside the scope of this paper, here we will ass
that pure screw dislocation systems are energetically pre
able to systems of screw-edge dislocations with similar
ometry and consider only those configurations of defects
smectic layers that correspond to pure screw dislocation
tems. The formalism developed in the preceding section
plies specifically to this kind of system.

The above result regarding the rotation angle of the sm
tic layers can be also obtained by considering the distor
fields. If the plane of the boundary is theyz plane and the
dislocations are parallel to thez axis, then the dislocation
source has the following form:
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btgb~x,y,z!5 ẑdd~x! (
n52`

`

d~y2nld!, ~4.3!

wherel d is the spacing between defects along they axis. The
layer tilt v induced by the source~4.3! can be obtained by
superimposing the contributions of individual dislocatio
~3.18!:

vx~x,y!5
d

2p (
n52`

`
y2nld

x21~y2nld!2
, ~4.4!

vy~x,y!52
d

2p (
n52`

`
x

x21~y2nld!2
. ~4.5!

The sums can be computed explicitly with the help of t
Poisson summation formula@19#:

vx5
d

2l d

sin 2py/ l d

cosh 2px/ l d2cos 2py/ l d
, ~4.6!

vy52
d

2l d

sinh 2px/ l d

cosh 2px/ l d2cos 2py/ l d
. ~4.7!

The limiting form of vx andvy for large uxu is

v~x→6`!56
d

2l d
ŷ, ~4.8!

which shows that the smectic layers undergo a rotation
d/ l d about thex axis as they cross the dislocation array
x50. While the director relaxes to the layer normal in
distance of the order of the twist penetration depthl, we see
that the smectic layers relax to the undistorted asympt
configuration within a distancel d of the grain boundary.

The intensive energetic characteristic of a twist gra
boundary is the elastic energy per unit area. It can be c
puted by the following limiting procedure. Instead of an i
finite dislocation array~4.3!, consider an array ofN screw
dislocations. The array extension in they direction isNld .
Its elastic energyFel(N) is given by Eq.~3.22!. Then the
elastic energy per unit interval of they axis of a complete
twist grain boundary can be taken as a limit of the ratio
the energy of a finite array to its extension in they direction:

F tgb
(1)

l d
5 lim

N→`

Fel~N!

Nld
. ~4.9!

To implement this limit, we should consider the square of
amplitude of the areal dislocation density

ub̄u25d2(
n51

N

(
n851

N

exp@ iqyl d~n2n8!#. ~4.10!

As N→`, note thatub̄u2/N→(n52`
` exp$iqyldn% and thus the

energy per unit area of a twist grain boundary is
2-6
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F tgb
(1)

A
5

Dd2

2l d
(

n52`

` E d2q

~2p!2

eiqyl dn

q'
2 11/l2

. ~4.11!

Note thatF tgb/A may be broken into an extensive part a
the interaction part. This corresponds to a separation of
n50 term from the rest of the sum:

F tgb
(1)

A
5

1

l d

Fel
(1)

L
1

F tgb
int ~1!

A
. ~4.12!

The interaction partF tgb
int can be written as a sum over co

tributions of dislocation pairs at distancesl d ,2l d , . . . :

F tgb
int ~1!

A
5

Dd2

2l d
(

n52`
n5” 0

` E d2q

~2p!2

eiqyl dn

q'
2 11/l2

5
Dd2

2l d
(
n51

` E
2`

` dqy

2p

cosqyl dn

Aqy
211/l2

5
Dd2

2p l d
(
n51

`

K0S l dn

l D , ~4.13!

whereK0 is the modified Bessel function of order zero. A
expected, this result closely resembles the interaction en
of parallel vortices in the London limit@20,21#:

FAbr
int

A
5

1

nL

F0
2

8p2l2 (
i

(
j . i

K0S r i j

l D , ~4.14!

whereF052p\c/e* is a quantum of the magnetic flux,nL
is the vortex areal density, andl is the magnetic field pen
etration depth.

Our next goal is to compute the interaction energy of tw
grain boundaries. Before we consider the grain bound
system in the TGBA phase, let us limit our consideration t
systems of finite number of parallel low-angle grain boun
aries that are sufficiently separated so that the harmonic
proximation~2.2! is applicable. Again, topology completel
determines the relative orientations of the smectic layer
different smectic blocks. To ensure that the defects are p
screw dislocations, we require that the defects in adjac
grain boundaries be rotated byDQ5d/ l d and, in addition,
that the outermost smectic blocks be rotated by the s
angle, but in the opposite directions with respect to the
fects in the middle of the system. In comparison with t
calculation for a single grain boundary, we are dealing n
with more general defect systems where not all defects
parallel to each other. Our formalism easily handles this s
ation.

Consider a system that contains only two twist gra
boundaries separated by a distancel from each other. The
angle between directions of the dislocation lines in these
boundaries isu5DQ5d/ l d . We may implement this by
taking one grain boundary atx52 l /2, rotated by2u/2 and
the other boundary atx5 l /2, rotated by u/2 where u
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5d/ld . The dislocation density for this complexion is th
sum of the contributions from the two grain boundariesb
5btgb

(1)1btgb
(2) , where

btgb
(1)~qx ,qy ,qz!5@ ẑ2~u/2!ŷ#2pde2 iqxl /2d @qz2~u/2!qy#

3 (
n52`

`

exp@ i ~qy1uqz/2!nld#, ~4.15!

btgb
(2)~qx ,qy ,qz!5@ ẑ1~u/2!ŷ#2pdeiqxl /2d @qz1~u/2!qy#

3 (
n52`

`

exp@ i ~qy2uqz/2!nld#. ~4.16!

We may transform the sums in the above expression in
sum of delta functions via the Poisson summation formu

btgb
(1)~qx ,qy ,qz!

5@ ẑ2~u/2!ŷ#d @qz2~u/2!qy#
2pd

l d
e2 iqxl /2

3 (
m52`

`

dFqy1uqz/22
2pm

l d
G , ~4.17!

btgb
(2)~qx ,qy ,qz!

5@ ẑ1~u/2!ŷ#d @qz1~u/2!qy#
2pd

l d
eiqxl /2

3 (
m52`

`

dFqy2uqz/22
2pm

l d
G . ~4.18!

By virtue of linear superposition, the energy of this disloc
tion density will be the sum of three terms. Two of the
terms are simply the self-energies of the two individual gr
boundaries that we have calculated above. The interac
energy comes from the cross term that is of the form:

F tgb
int ~2,l !52E d3q

~2p!3
btgb

(1),i~q!Mi j ~q!btgb
(2),j~2q!,

~4.19!

whereMi j (q) is the general interaction kernel that accoun
for both screw and edge dislocations@2#. Upon inspection of
Eqs.~4.17! and~4.18!, we note that:~1! Since (d/ l d)5u the
ŷ components of the dislocation densities may be igno
since we are only working to quadratic order inu5DU, and
~2! in the productbtgb

(1)btgb
(2) only them50 terms in Eq.~4.17!

contribute because of the delta-function constraints. As a
sult, only theqz50 andqy50 modes ofbtgb

(1) andbtgb
(2) con-

tribute. Moreover, since theqy50 modes of the layer nor
mals in Eqs.~4.6! and ~4.7! relax to their asymptotic value
immediately, we see that we have constructed a glob
consistent layer structure between the boundaries. Thus
may use Eq.~3.22! to evaluate the interaction energy:
2-7
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F tgb
int ~2,l !

A
5

Dd2

2l d

1

l d
E

2`

` dqx

2p

eiqxl1e2 iqxl

qx
211/l2

5
Dd2

2l d

l

l d
e2 l /l.

~4.20!

Note that since only theqy50 modes contribute, the inter
action energy is independent of arbitrary phason shifts of
grain boundaries alongy. In the harmonic approximation, th
interaction energy of grain boundaries in a system of sev
twist grain boundaries breaks down into the sum of con
butions of individual grain boundary pairs. Since the h
monic theory admits linear superposition, the result~4.20!
can be applied to any angle of rotation at any separationl as
long as the grain boundaries are composed purely of sc
defects.

Another way to look at this result is to consider the b
havior of the director between the grain boundaries. We m
expand the director and displacement fields in Fourier mo
at all the reciprocal lattice vectorsG. In the harmonic ap-
proximation, director and displacement fields from differe
sources add linearly. Thus if no pairs of grain boundar
have dislocation axes parallel or antiparallel and dislocati
in each boundary are straight, each distortion~displacement
uG or dnG) for a given reciprocal lattice vectorG5” 0 arises
from a unique grain boundary. Thus finite reciprocal latt
vector distortions from different grain boundaries do not
teract. Each grain boundary, however, produces aG50 di-
rector distortiondn0, which is sensitive to the presence
other grain boundaries. The origin of interactions betwe
grain boundaries is thusdn0, and we can calculate thes
interactions by applying appropriate boundary condition
dn0. For an isolated grain boundary,dn05(0,dny,0) reaches
constant asymptotic values of (0,6u). If there is more than
one grain boundary,dn0 has to rotate through the angle
determined by the dislocation complexion in a shorter d
tance and at greater energy cost. Consider two walls w
dislocation separationl d located atx56 l /2. If we consider
Eqs. ~3.15! and ~3.16! in this situation we see that“'•v
5“'•dn50 since bothv and dn only have components
along ŷ but only depend onx. Thus Eq.~3.16! becomes:

]x
2dny5

1

l2
@dny1“'u#. ~4.21!

We have three regions to consider. Forx<2 l /2 we have

“'u5u ŷ, ~4.22!

dny52u1Ae(x1 l /2)/l, ~4.23!

while betweenx52 l /2 andx5 l /2

“'u50, ~4.24!

dny5B
sinh~x/l!

sinh~ l /2l!
, ~4.25!

and forx> l /2
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“'u52u ŷ, ~4.26!

dny5u2Ce2(x2 l /2)/l. ~4.27!

Continuity of the director forcesC5A5u2B. Inserting
these solutions into into the energy~3.14! we have

F~ l !

A
5Dl@~B2u!21B2 coth~ l /2l!#. ~4.28!

Minimizing over the free parameterB and usingu5d/ l d , we
find

F~ l !

A
5

Dld2

l d
2

coth~ l /2l!

11coth~ l /2l!
5

Dld2

2l d
2 @11e2 l /l#.

~4.29!

The energy of interaction is simply

DF

A
5

F~ l !2F~`!

A
5

Dd2

2l d
2

le2 l /l, ~4.30!

which agrees with our previous result~4.20!. This shows that
the energy of interaction comes from the ‘‘confinement’’
the director—it is forced to twist from2u/2 to u/2 in a
length on the order of a fewl.

V. TGBA PHASE

In the preceding section we showed that in a system c
posed of finite number of low-angle twist grain boundar
the energy of the dislocation interaction within a gra
boundary and the energy of the interboundary interact
decay exponentially with distance. It suggests that the di
cation arrangement in the TGBA phase could be treated a
well within the same computational framework, even thou
the angles between the directions of dislocations in the en
system are not restricted to be small. Indeed, when the g
boundaries are low angle, the dislocations that cannot
described as nearly parallel are separated by the distanc
many grain sizesl b . It is reasonable to hope that we can fin
a regime wherel b is sufficiently large so that the interactio
part of the TGBA elastic free energy density is dominated
the interaction of the dislocations in a few nearby gra
boundaries. In this case our formalism would be reliable.

Provided that that we are in the correct regime, the p
ceding section supplies us with all the essential ingredient
compute the interaction energy of dislocations arranged
the TGBA structure~Fig. 1!. To construct an appropriate dis
location source, we need to combine the sources for in
vidual twist grain boundaries at positions 0,6 l b ,
62l b , . . . along the pitch axis. The grain boundaries at d
ferent positions are distinguished by the direction of defe
and, in addition, might be arbitrarily shifted in the directio
perpendicular to the pitch axis. We may, through superp
tion, use the results from the last section to find
2-8
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f TGB
int 5

Dd2

2l bl d
F 1

p (
n51

`

K0S l dn

l D1
l

l d
(
n51

`

e2 l bn/lG . ~5.1!

We can understand the interaction term by again conside
the confinement energy of the director. In the case of the
TGBA structure, each ‘‘cell’’ between the grain boundari
must be identical. Thus we may use Eq.~4.24! with B
5u/2 to calculate the energy for each cell. We find compl
agreement with the interaction term above.

In addition to the elastic energy of interacting screw d
locations, the total free energy of the TGBA structure in-
cludes two extensive terms that depend only on the dislo
tion density 1/(l bl d) and not on the details of a particula
dislocation arrangement. These terms are the extensive
of the screw dislocation energy density and the chiral ene
term:

f tot5 f TGB
int 1 f disl1 f ch ~5.2!

5
Dd2

2l bl d
F 1

p (
n51

`

K0S l dn

l D1
l

l d
(
n51

`

e2 l bn/lG
1

E

l bl d
2

hd

l bl d
, ~5.3!

where E is the energy cost per unit line of an individu
screw dislocation. In the free energy density~5.2!, the total
energy cost of dislocations given by the first two terms co
petes with the gain in the chiral energy. The twist penetrat
depthl sets the length scale forl d and l b . Inspecting Eq.
~5.2!, we see that the optimal values ofl d /l, l b /l are
controlled by a single combination of the material para
eters

a5
2~hd2E!

Dd2
. ~5.4!

FIG. 1. Schematic representation of the TGBA phase.
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We minimized of the energy density~5.2! with respect to
l d /l and l d /l numerically. The results are presented in F
2. We can make several observations regarding our res
As is directly evident from Fig. 2, there is a range ofa where
the preferred values ofl d and l b are of severall and, more-
over, the ratiol d / l b is close to 1. According to the remarks
the beginning of this section, this kind of geometry valida
our computational techniques. To see how much far-aw
grain boundaries contribute to the establishment of the
location lattice structure, we computed the positions
minima for free energy densities obtained from Eq.~5.2! by
truncating the sums overn to one, two, and three terms. Th
results of this computation are presented in Fig. 3, wh
demonstrate that in the range 0,a,0.2, which corresponds
to l b ,l d.2.5l, the lattice structure is determined almost e
tirely by the interactions of nearest and next-to-nearest tw
grain boundaries.

A very interesting result emerges regarding the ratio
the lattice parametersl b / l d . It turns out that the ratio is

FIG. 2. Dependence of the dislocation spacing within a gr
boundary l d and the grain sizel b on the control parametera
52(hd2E)/Dd2. At some large value ofa there is a transition to
the cholesteric phase~at hC2) while a50 corresponds to the
smectic-TGBA transition.

FIG. 3. Dependence of the minima positions on the numbe
terms kept in the sum over grain boundaries in the free ene
density~5.2!. The style of each curve reflects the number of ter
used in its computation. The upper set of curves correspond tol d /l,
while the lower curves correspond tol b /l. The solid curves are the
same curves as in Fig. 2.
2-9
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nearly constant for a very wide range of values of the con
parametera ~Fig. 4!. This prediction should be compared
the experimental values ofl b / l d measured by Navailles an
co-workers@15#.

VI. CONCLUSIONS

The theory of the screw dislocation interaction in t
TGBA phase in the low-angle grain boundary limit was co
structed by analogy with the theory of vortex interaction
the Abrikosov phase in the high-k limit. The resulting theory
was applied to the calculation of the lattice parameters of
screw dislocation arrangement. We found that in this lim
the ratio of the two lattice parametersl b / l d remains prati-
cally constant over a very wide range of the control para
eter. The value of the ratio is 0.95. It is interesting to no
this value is within several thousands of the value obtai
by Renn and Lubensky@1# in the opposite limith→hc2 for a
specific valueK/K250. Whether this is accidental or no
remains to be discovered. In contrast to the Renn and Lub
sky result, the value ofl d / l b obtained here is independent
K1 and K3. This value is consistent with the experimen
data of Navailles and co-workers@15# ~Fig. 5!.

Recent work@19# that studied the nonlinear elasticity o
smectic liquid crystals showed that defects in the same g
boundary had power-law interactions. One might expect
general, that the interaction between grain boundaries wo
remain exponential. It would seem then that the grain bou
aries would move closer together as the defects in the bo
aries would move further apart, casting some doubt on
result~and on experiment!. In the absence of director mode
the nonlinear elasticity is@19#

F5 1
2 E d3x$B@]zu2 1

2 ~“u!2#21K~“'
2 u!2%. ~6.1!

In this nonlinear theory the director and the layer normal
locked together so thatn52“f/u“fu. While a full analysis
of the energetics of two interacting grain boundaries will
the focus of further work, we can, in the spirit of the analy
at the end of Sec. IV, consider a single, distorted screw
location:

FIG. 4. Dependence ofl b / l d on the control parametera. Note
that it is nearly independent ofa.
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u~x,y!5tan21F py

l tan~px/ l !G . ~6.2!

The layer normal of this dislocation relaxes in the usual w
along they direction but relaxes to its asymptotic value in th
confined region betweenx56 l /2. It is straightforward to
calculate the nonlinear energy of this defect and to find
‘‘confinement’’ energy by subtracting thel 5` value. Ex-
panding in powers ofl 21 we have

“'
2 u'

p2

l 2

2xy~x22y2!

~x21y2!2
, ~6.3!

~“u!2'
1

x21y2
1

p2

l 2

2x2y22 2
3 x4

~x21y2!2
. ~6.4!

It is clear that thel dependence of the confinement ener
scales asl 22 that can balance thel d

22 interaction found be-
tween defects in the same grain boundary@19#. We shall
explore this further in future work.
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FIG. 5. Experimental dependence ofl b / l d on temperature. The
data set marked with triangles is taken from@15#, the data set
marked with boxes was provided courtesy of Navailles. The first
of data was taken while increasing temperature, while the latter
taken in a run with decreasing temperature. Note that the g
rotation angle increases from 6° for the lowest temperature to
for the highest temperature.
2-10



e,

v

k,

k,

S

J.

rt,

n,

. II

,

s

DISLOCATION GEOMETRY IN THE TGBA PHASE: . . . PHYSICAL REVIEW E 63 061702
@1# S. R. Renn and T. C. Lubensky, Phys. Rev. A38, 2132~1988!.
@2# P. M. Chaikin and T. C. Lubensky,Principles of Condensed

Matter Physics ~Cambridge University Press, Cambridg
1995!.

@3# P.-G. de Genness, Solid State Commun.10, 753 ~1972!.
@4# P.-G. de Gennes and J. Prost,The Physics of Liquid Crystals,

2nd ed.~Claredon Press, Oxford, 1993!.
@5# A. B. Harris, R. D. Kamien, and T. C. Lubensky, Phys. Re

Lett. 78, 1476 ~1997!; 78, 2867~E! ~1997!; Rev. Mod. Phys.
71, 1745~1999!.

@6# Z. Hao and J. R. Clem, Phys. Rev. B46, 5853~1992!.
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